首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2243篇
  免费   77篇
  国内免费   29篇
测绘学   74篇
大气科学   194篇
地球物理   554篇
地质学   827篇
海洋学   206篇
天文学   320篇
综合类   13篇
自然地理   161篇
  2022年   17篇
  2021年   43篇
  2020年   45篇
  2019年   43篇
  2018年   73篇
  2017年   53篇
  2016年   73篇
  2015年   36篇
  2014年   68篇
  2013年   124篇
  2012年   79篇
  2011年   130篇
  2010年   85篇
  2009年   106篇
  2008年   100篇
  2007年   80篇
  2006年   65篇
  2005年   69篇
  2004年   55篇
  2003年   46篇
  2002年   64篇
  2001年   37篇
  2000年   50篇
  1999年   47篇
  1998年   32篇
  1997年   50篇
  1996年   45篇
  1995年   36篇
  1994年   31篇
  1993年   29篇
  1992年   23篇
  1991年   23篇
  1990年   22篇
  1989年   14篇
  1987年   36篇
  1986年   17篇
  1985年   27篇
  1984年   30篇
  1983年   27篇
  1982年   35篇
  1981年   21篇
  1980年   27篇
  1979年   18篇
  1978年   19篇
  1977年   21篇
  1976年   21篇
  1975年   25篇
  1974年   18篇
  1973年   19篇
  1971年   13篇
排序方式: 共有2349条查询结果,搜索用时 31 毫秒
1.
To the north of Hanoi, about a day's drive by car, lies Ha Giang Province, the northernmost region of Vietnam. Ha Giang is remote from the hustle and bustle of daily life, and beyond its eponymous provincial capital towards the border with China, mountains rise quickly to Quan Ba, ‘Heaven's Gate’. The mountains form an uneven landscape of steep‐sided karst rising from deep river‐cut gorges and form a formidable barrier on the northern frontier of Vietnam. Beyond ‘Heaven's Gate’ lies the little travelled region of Dong Van, with its majestic mountains of Palaeozoic strata rising precipitously to the sky. Here, a century ago, the French geologists Henri Mansuy and Jacques Deprat documented early finds of fossils from lower Palaeozoic strata on the border with China.  相似文献   
2.
Atacama Large Millimetre/sub-millimetre Array(ALMA) observations of CO(1–0) and CO(2–1) emissions from the circumstellar envelope of the asymptotic giant branch(AGB) star EP Aqr have been made with four times better spatial resolution than previously available. They are analysed with emphasis on the de-projection in space of the effective emissivity and flux of matter using as input a prescribed configuration of the velocity field, assumed to be radial. The data are found to display an intrinsic axisymmetry with respect to an axis making a small angle with respect to the line of sight. A broad range of wind configurations, from prolate(bipolar) to oblate(equatorial) has been studied and found to be accompanied by significant equatorial emission. Qualitatively, the effective emissivity is enhanced near the equator to produce the central narrow component observed in the Doppler velocity spectra and its dependence on star latitude generally follows that of the wind velocity with the exception of an omni-present depression near the poles. In particular, large equatorial expansion velocities produce a flared disc or a ring of effective emissivity and mass loss. The effect on the determination of the orientation of the star axis of radial velocity gradients, and possibly competing rotation and expansion in the equatorial disc, is discussed. In general,the flux of matter is found to reach a broad maximum at distances of the order of 500 AU from the star.Arguments are given that may be used to favour one wind velocity distribution over another. As a result of the improved quality of the data, a deeper understanding of the constraints imposed on morphology and kinematics has been obtained.  相似文献   
3.
Hans Van de Vyver 《水文研究》2018,32(11):1635-1647
Rainfall intensity–duration–frequency (IDF) curves are a standard tool in urban water resources engineering and management. They express how return levels of extreme rainfall intensity vary with duration. The simple scaling property of extreme rainfall intensity, with respect to duration, determines the form of IDF relationships. It is supposed that the annual maximum intensity follows the generalized extreme value (GEV) distribution. As well known, for simple scaling processes, the location parameter and scale parameter of the GEV distribution obey a power law with the same exponent. Although, the simple scaling hypothesis is commonly used as a suitable working assumption, the multiscaling approach provides a more general framework. We present a new IDF relationship that has been formulated on the basis of the multiscaling property. It turns out that the GEV parameters (location and scale) have a different scaling exponent. Next, we apply a Bayesian framework to estimate the multiscaling GEV model and to choose the most appropriate model. It is shown that the model performance increases when using the multiscaling approach. The new model for IDF curves reproduces the data very well and has a reasonable degree of complexity without overfitting on the data.  相似文献   
4.
Natural Resources Research - In this paper, we used artificial intelligence (AI) techniques to investigate the relation between the rock size distribution (RSD) and blasting parameters for rock...  相似文献   
5.
Soil surface roughness (SSR) is an important factor in controlling sediment and runoff generation, influencing directly a wide spectrum of erosion parameters. SSR is highly variable in time and space under natural conditions, and characterizing SSR to improve the parameterization of hydrological and erosion models has proved challenging. Our study uses recent technological and algorithmic developments in capturing and processing close aerial sensing data to evaluate how high-resolution imagery can assist the temporally and spatially explicit monitoring of SSR. We evaluated the evolution of SSR under natural rainfall and growing vegetation conditions on two arable fields in Denmark. Unmanned aerial vehicle (UAV) photogrammetry was used to monitor small field plots over 7 months after seeding of winter wheat following conventional and reduced tillage treatments. Field campaigns were conducted at least once a month from October until April, resulting in nine time steps of data acquisition. Structure from motion photogrammetry was used to derive high-resolution point clouds with an average ground sampling distance of 2.7 mm and a mean ground control point accuracy of 1.8 mm. A comprehensive workflow was developed to process the point clouds, including the detection of vegetation and the removal of vegetation-induced point cloud noise. Rasterized and filtered point clouds were then used to determine SSR geostatistically as the standard deviation of height, applying different kernel sizes and using semivariograms. The results showed an influence of kernel size on roughness, with a value range of 0.2–1 cm of average height deviation during the monitoring period. Semivariograms showed a measurable decrease in sill variance and an increase in range over time. This research demonstrated multiple challenges to measuring SSR with UAV under natural conditions with increasing vegetation cover. The proposed workflow represents a step forward in tackling those challenges and provides a knowledge base for future research. © 2020 John Wiley & Sons, Ltd.  相似文献   
6.
The coastal aquifers and inland waters of the Long Xuyen Quadrangle and Ca Mau Peninsula of southern Vietnam have been significantly impacted by sea water intrusion (SI) as a result of recent anthropogenic activities. This study identified the evolution and spatial distribution of hydrochemical conditions in coastal aquifers at this region using Hydrochemical Facies Evolution Diagram (HFE-D) and Geographical Information System mapping. Hydraulic heads and water chemistry were measured at 31 observation wells in four layered aquifers during dry and rainy seasons in early (2005), and more recent (2016), stages of agricultural development. Hydrochemical facies associated with intrusion or freshening stages were mapped in each aquifer after assigning mixing index values to each facies. The position of groundwater freshening and SI phases differed in Holocene, Upper Pleistocene, Middle Pleistocene, and Lower Pleistocene aquifers. The geographic position of freshening and intrusion fronts differ in dry and rainy seasons, and shifted after 11 years of groundwater abstraction in all four aquifers. The spatial and temporal differences in hydrochemical facies distributions according to HFE-D reflect the relative impact of SI in the four aquifers. The study results provide a better understanding of the evolution of groundwater quality associated with SI in a peninsular coastal aquifer system, and highlight the need for improving groundwater quality and management in similar coastal regions.  相似文献   
7.
Policies, measures, and models geared towards flood prevention and managing surface waters benefit from high quality data on the presence and characteristics of drainage ditches. As a cost and labour effective alternative for acquiring such data through field surveys, we propose a method (a) to extract vector data representing ditch drainage networks based on local morphologic features derived from high resolution digital elevation models (DEM) and (b) to identify possible connections in the ditch network by calculating a probability of the connectivity using a logistic regression where the predictor variables are characteristics of the ditch centre lines or derived from the DEM. Using Light Detection and Ranging (LiDAR) derived DEMs with a 1 m resolution, the method was developed and tested for a mixed agricultural residential area in north‐eastern Belgium. The derived ditch segments had an error of omission of 8% and an error of commission of 5%. The original positional accuracy of the centre lines of the extracted ditches was 0.6 m and could be improved to 0.4 m by shifting each vertex to the position of the lowest LiDAR point located within a radius equal to the spatial resolution of the used DEM. About 69% of the false disconnections in the network were identified and corrected leading to a reduction of the unconnected parts of the ditch network by 71%. The extracted and connected network approximated the reference ditch network fairly well.  相似文献   
8.
Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface–groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.  相似文献   
9.
The northern coast of Vietnam has accumulated a significant amount of sediment discharged from the multiple distributaries of rivers such as the Red River and Ma River. While recent decreases of the sediment supply appears to have a significant impact on coastal erosion, the complex network of these distributaries makes it difficult to determine the overall spatiotemporal characteristics of sediment discharges and related topographic changes. The goal of the current study is to develop a satellite-based monitoring system for observation of turbidity discharged from the multiple rivers and to investigate the applicability of the developed monitoring system through a case study on the northern coast of Vietnam. Based on the in-situ observed data, a formula was determined for estimation of the surface water turbidity as a function of the red band reflectance of Moderate Resolution Imaging Spectro-radiometer (MODIS) images. The formula was then combined with a newly determined threshold for cloud-masking to obtain maps of the nearshore turbidity patterns. These maps capture the spatiotemporal water surface turbidity along the entire coast of the Red River Delta and the coast around the Ma River mouth over the past sixteen years with frequency of twice a day. Finally, long-term trends of the turbidity patterns from multiple rivers were compared with the in-situ observation data and it was found that the Red River and the Ma River showed clearly contrasting characteristics, which reasonably explain the recent coastal shoreline changes and characteristics of sediment sampled along the coast.  相似文献   
10.
Intertidal zones by definition are exposed to air at low tide, and the exposure duration can be weeks (e.g. during neap tides) depending on water level and bed elevation. Here we investigated the effect of varying exposure duration (6 h to 10 days) on intertidal mudflat erosion (measured using the EROMES device), where the effects of water content and biofilm biomass (using chlorophyll-a content as a proxy, Chl-a μg g−1) were taken into account. Sediments were collected between spring and summer (in October 2018, January 2019 and February 2019) from an intertidal site in the Firth of Thames, New Zealand. Longer exposure duration resulted in more stable sediments [higher erosion threshold (Ƭcr, N m−2) and lower erosion rate (ER, g m−2 s−1)]. After 10 days, exposure increased Ƭcr by 1.7 to 4.4 times and decreased ER by 11.6 to 21.5 times compared with 6 h of exposure. Chl-a and water content changed with exposure duration and were significantly correlated with changes in Ƭcr and ER. The stability of sediments after two re-submersion periods following exposure was also examined and showed that the stabilizing effect of exposure persisted even though water content had increased to non-exposure levels. Re-submersion was associated with an increase in Chl-a content, which likely counteracted the destabilizing influence of increased water content. A site-specific model, which included the interplay between evaporation and biofilm biomass, was developed to predict water content as a function of exposure duration. The modelled water content (WMod.) explained 98% of the observed variation in water content (WObs.). These results highlight how the exposure period can cause subtle changes to erosion regimes of sediments. An understanding of these effects (e.g. in sediment transport modelling) is critical to predicting the resilience of intertidal zones into the future, when sea-level rise is believed to exacerbate erosion in low-lying areas. © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号